分类:电子论文 时间:2021-12-18 热度:989
摘要 基于北京市某燃气热水供暖锅炉房整个供暖季的全工况跟踪实测数据,分析了燃气锅炉在不同工况下的热效率及其影响因素、节能潜力。结果表明:供暖季锅炉房集中供热调节方式为分阶段改变流量的质调节和质量 流量调节,锅炉房供水温度为80~103 ℃,回水温度为40~53℃,燃气锅炉整个供暖季负荷率为45.3%~95.1%,过量空气系数为1.01~1.22,排烟温度为65.4~151 ℃,锅炉低热值热效率为92.1%~96.8%;锅炉热效率随过量空气系数的增大先增大后减小,过量空气系数为1.10时,锅炉热效率最大;锅炉热效率随负荷率的增大而增大,锅炉负荷率大于84%时,锅炉热效率提高较快,锅炉负荷率每增大1%,锅炉热效率增大0.41%~0.55%;锅炉热效率还随回水温度的降低而增大。对锅炉进行排烟余热利用,将排烟温度降到比回水温度高5~10 ℃时,锅炉系统总热效率可提高到105.2%~107.6%,供暖季锅炉热效率可平均提高4.8%~7.5%,单位容量锅炉(0.7 MW)整个供暖季可节约燃气1.03万~1.38 万 m3,并相应减少 CO2 和 NOx 等的排放。因此,对于在不同负荷率下排烟温度为65~150 ℃的燃气热水锅炉,节能减排潜力可观。
关键词 燃气锅炉 热效率 负荷率 过量空气系数 排烟温度 节能潜力
0 引言
中国天然气消耗量2018年为2766亿 m3,是世界最大的天然气进口国[1]。燃气锅炉广 泛 应 用于工业和供热等领域,随着我国大气环境治理和蓝天行动计划实施,燃气锅炉成为北方大中城市重要的供热热源设备之一,是主要用气和能耗大户及氮氧化物排放大户。2017年底北京市天然气供热比例达到97%以上[2]。研究燃气锅炉在不同运行工况下的热效率,挖掘节能潜力,对节能减排具有重要意 义。2015 年 北 京 市 颁 布 并 实 施 了 DB 11139—2015《锅炉大气污染物排放标准》,近 年 来 对燃气锅炉进行了降氮改造,其中部分锅炉通过降低燃烧温度减少 NOx 生成,但同时 降 低 了 锅 炉 燃 烧效率。
国内外学者围绕燃气锅炉节能进行了大量的研究。张堃分析了燃气锅炉燃烧特点与锅炉运行方式[3];刘兰 斌 等 人 研 究 了 采 用 热 泵 回 收 电 厂 余热[45];阎顺林等人[6]、李平姣等人[7]研究了电厂燃煤锅炉运行参数的影响;马兆康[8]、王鹏[9]、李幸春夏[10]分别检测了燃气锅炉在部分时间段或部分负荷率条件下的热效率,分析了排烟余热潜力;王随林团队开发了防腐高效低阻烟气冷凝热能深度回收设备,应用于降氮改造的燃气锅炉烟气冷凝余热深度回收,提高了锅炉热效率[1117]。
本文基于北京某供热厂燃气热水锅炉整个供暖季的全工况跟踪实测数据,分析了锅炉房集中供热调节方式、供回水温度等参数、燃气锅炉在不同工况下的热效率及其变化规律和节能潜力,研究了不同负荷率、供回水温度、过剩空气系数对热效率的影响及其 规 律;预测了利用烟气余热回收技术后,在不同排烟温度下的节能潜力和效益,为燃气锅炉节能改造和提高能效、减少排放、降低用能成本提供技术支持,并为多台燃气锅炉运行条件下,优化各台锅炉运行负荷提供依据。
1 燃气供热锅炉房检测系统
通过实际调研发现,锅炉热效率差异 较 大,用能水平参差不齐,燃气锅炉房运行调节主要根据经验确定锅炉房供回水温度,如无法满足所需用户热负荷,则增加锅炉运行台数,未实现自动化用能管理,造成能源浪费严重,运行成本较高,具有较大的节能潜力。
北京某供热厂内有10台14 MW 燃气热水供热锅炉,总供热 面 积287万 m2,在2017—2018年供暖季(2017年11月15日至2018年3月15日)对该供热厂燃气锅炉运行参数进行了跟踪检测,主要检测参数包括:锅炉供回水温度、循环水流量、燃气量、烟气含氧量、烟气温度、室外空气温度(干球温度)等。主要检测仪器如表1所示。
2、检测数据分析
2.1 锅炉房运行状况
2.1.1 各台锅炉燃气量随室外温度的变化
供暖季实际运行7台燃气锅炉,各台锅炉燃气量与室外温度的关系及锅炉房负荷率的变化如图1所示。
由图 1 可 知:供暖季室外日平均温度为-9.4~10.7 ℃;各 台 锅 炉 燃 气 量 为 921.4~1427.2m3/h;定义锅炉输出热量与锅炉额定功率比值为负荷率,各 台 锅 炉 运 行 负 荷 率 为45.3%~95.1%,随着室外温度的降低而升高,相同时刻各台锅炉负荷率相差小于3%。
2.1.2 各台锅炉供回水温度随室外温度的变化
供暖季各台锅炉供回水温度与室外温度的关系如图2所示。
由图2可知:供暖季供水温度为80~103 ℃,回水温度为40~53 ℃,供水温度随着室外温度的降低而升高;各台锅炉同一时刻供、回水温度相差0~12.8%。
2.1.3 各台锅炉供热量、循环水流量随室外温度的变化
各台锅炉供热量、循环水流量与室外温度的关系如图3所示。
由图3可 知:供暖季各台锅炉循环水流量为197~228t/h,各台锅炉供热量为 6.0~12.8MW,随着室外温度的降低而升高;单 台 锅 炉 循 环水流量变化小于10.1%。
由图2,3可知,各台锅炉流量变化比供回水温度变化小,主要以改变供回水温度的方式调节供热量。
2.1.4 锅炉房集中供热调节方式
锅炉房锅炉运行台数的变化如图4所示。
由图1~4可知,整个供暖季锅炉房集中供热调节分为4个阶段,开始运行的前3个阶段为分阶段改变流量的质调节,第4个阶段为质量 流量调节。各阶段锅炉房运行参数如表2所示。
2.2 单台锅炉热效率及其影响因素分析
该锅炉房7台燃气热水锅炉中4台保持连续运行,3台间歇运行,选取其中1台连 续 运 行 的 燃气锅炉,分析影响锅炉热效率的因素及其规律。
单台燃气锅炉主要运行参数的变化如图5所示。
由图 5 可 知:燃 气 锅 炉 负 荷 率 为 66.1% ~87.8%,过量空气系数为1.05~1.22,循环水流量为202.1~222.2t/h,供水温度为86.0~98.8℃,回水 温 度 为40.6~53.0 ℃,烟 气 温 度 为65.4~151.0 ℃,锅炉热效率为92.1%~96.8%。
1)回水温度对锅炉热效率的影响
。不同锅炉负荷率下回水温度对锅炉热效率的影响如图6所示。由图6可知:锅炉负荷率分别为75%,80%,85%时,过量空气系数为1.05~1.15,供水温度为92~97 ℃,回水温度为41~51 ℃,排烟 温 度 为 121.0~140.5 ℃,锅 炉 热 效 率 为92.7%~95.5%;锅炉热效率随回水温度的降低而升高;回水温度每降低1 ℃,排 烟 温 度 降 低0.1~1.7 ℃,锅炉热效率提高0.1%~0.4%。
2)过量空气系数对锅炉热效率的影响。
不同锅炉负荷率下过量空气系数对锅炉热效率的影响如图7所示。由图7可知:锅炉负荷率分别为75%,80%,85%时,供 水 温 度 为90~96 ℃,回水温 度 为 47~50 ℃,过 量 空 气 系 数 为 1.05~1.21,排烟温度为126.0~140.3℃,锅炉热效率为93.1%~95.1%;不同负荷率下,过量空气系数为1.10,锅炉热效率最大为94.3%~95.1%;过量空气系数小于1.10时,锅炉热效率随过量空气系数增大而提高,过量空气系数每增大0.01,锅炉热效率提高0.03%~1.10%;过量空气系数大于1.10时,锅炉热效率随过量空气系数减小而提高,过量空气系数每减小0.01,锅炉热效率提高0.03%~0.18%。
过量空气系数过小时,可燃气体不完全燃烧热损失q3 增大,锅炉热效率降低;过量空气系数过大时,大量空气进 入 炉 膛,排 烟 热 损 失q2 增 大,锅 炉热效率亦降低,因此锅炉在运行时要控制排烟含氧量,使过量空气系数保持在1.10附近。
3)锅炉负荷率对锅炉热效率的影响。
锅炉负荷率对锅炉热效率的影响如图8所示。由图8可知:
① 燃气锅炉负荷率为76%~87%、供水温度为91~93 ℃、回水温度为46~47 ℃、过量空气系数为1.19~1.21时,排烟温度为131~137 ℃、热效率为92.1%~94.9%,均随锅炉负荷率的增大而升 高,锅 炉 负 荷 率 每 增 大 1%,排 烟 温 度 升 高0.1~2.5 ℃,锅炉热效率提高0.1%~0.55%。
② 锅炉负荷率大于84%时,锅炉热效率升高加快,锅炉负荷率每增大1%,排烟温度升高0.1~0.2 ℃,锅炉热效率提高0.41%~0.55%;在锅炉负荷率小于84%时,锅炉负荷率每增大1%,排烟温度升高0.1~2.5 ℃,锅炉热效率提高0.1%~0.3%。
③ 对于该锅炉,在锅炉回水温度、过量空气系数和循环水 流 量 一 定 的 条 件 下,随 锅 炉 负 荷 率 增大,炉膛断面热强度增大,引起炉膛温度升高,排烟温度升高。但针对不同的锅炉,由于受锅炉容量、回水温度、过量空气系数、本体结构和燃烧方式等多种因素影响,不同锅炉负荷率下,锅炉热效率增幅不同。
2.3 锅炉节能潜力
燃气热水锅炉排烟温度为65.4~151.0℃,采用烟气冷凝热能回收技术,将锅炉排烟温度降至比回水温度高5~10 ℃,按2017—2018年供暖季运行工况条件分析,排烟余热利用前后燃气锅炉系统供热量和热效率的变化如图9所示。
由图9可知:
1)当排烟温度降至比 回 水 温 度 高5 ℃时,燃气热水锅炉排烟温度从65.4~151.0 ℃降到45~57℃,锅炉系统总热效率为91.5%~107.6%,锅炉热效率提高了4.5%~14.4%,供暖季锅炉热效率平均提高了7.5%;单位锅炉容量(0.7 MW)可相应增加供热量0.06MW。当排烟温度降至比回水温度高10 ℃时,最终排烟温度为50~68 ℃,锅炉系统总热效率为89.0%~105.2%,锅炉热效率提高了3.3% ~11.8%,锅炉热效率平均提高了4.8%,单位锅炉 容 量(0.7 MW)可 相 应 增 加 供 热量0.04MW。
2)当锅炉负荷率大于80%时,锅炉热效率升高加快,当排烟温度降至比回水温度高5~10 ℃ 时,最大可提高9.7%~12.4%,锅炉负荷率大于80%时,锅炉负荷率越高,相应节能潜力越大。
3)采用烟气冷凝热能回收技术,按北京燃气单价2.49元/m3 计,若锅炉 排 烟 温 度 降 至 比 回 水温度高5℃时,供暖季锅炉热效率平均提高7.5%,单位容量锅 炉(0.7 MW)每 供 暖 季 可 节 约 燃 气 量1.38万 m3,节 约 燃 气 费 用3.4万 元;即 使 排 烟 温度降至较回水温度高10 ℃,锅炉热效率平均提高4.8%,单位容量锅炉(0.7MW)每供暖季可节约燃气量1.03万 m3,节约燃气费用2.6万元。整个锅炉房采用烟气冷凝热能回收技术,每供暖季可节约燃气量109.3万~166.4万 m3,节约燃气费用271.6万~413.7万元。
2.4 锅炉房运行优化
当锅炉房有多台锅炉运行时,需根据室外温度和围护结构等确定锅炉房供热量,优化锅炉运行台数及负荷率,优先启动热效率高的锅炉,每台锅炉尽量在高负荷率下运行,以保证每台锅炉经济高效运行。锅炉运行过程中应实时监控室外温度、供热负荷及各台锅炉参数,及时调整锅炉运行台数和每台锅炉运行负荷率,在满足供热需求的条件下,实现锅炉房安全节能高效运行,提高企业用能管理水平。
为进一步提高燃气锅炉热效率,通常采用排烟余热回收利用技术,即在锅炉尾部增设烟气冷凝热能回收装置,用 以 加 热 锅 炉 二 次 网 回 水 或 锅 炉 进水,节约燃料成本,提高能源利用热效率,投资回收期约为1~2个供暖季[18],具有显著的节能减排和经济效益。——论文作者:郑 鹏、张立申 、王随林、王海鸿、穆连波 张 威